DANCer
DANCer (Deep layer ALS Neural network Classifier) takes RNA-seq data from postmortem ALS cortex tissue samples and classifies them into the three ALS molecular subtypes described in Tam et al 2019. This is achieved by converting variance stabilized transformed (VST) counts data to WGCNA module eigengene values, then running these modules through a trained neural network for ALS subtype assignment. For more details, please refer to the publication in the citation section.
DANCer is designed for bulk RNA-seq datasets, while scDANCer is designed for pseudo-bulk single-cell/single-nuclei RNA-seq datasets.
Download instructions
You can download this program and install it by following the installation instructions from our GitHub repository
Citation
O'Neill K, Shaw R, Bolger I; NYGC ALS Consortium; Tam OH, Phatnani H, Gale Hammell M. (2025) ALS molecular subtypes are a combination of cellular and pathological features learned by deep multiomics classifiers. Cell Rep. 2025 Mar 10;44(3):115402. PMID: 40067829.